Light-Dependent Interactions between the Drosophila Circadian Clock Factors Cryptochrome, Jetlag, and Timeless
نویسندگان
چکیده
Circadian clocks regulate daily fluctuations of many physiological and behavioral aspects in life. They are synchronized with the environment via light or temperature cycles [1]. Natural fluctuations of the day length (photoperiod) and temperature necessitate a daily reset of the circadian clock on the molecular level. In Drosophila, the blue-light photoreceptor Cryptochrome (Cry) mediates a rapid light-dependent degradation of the clock protein Timeless (Tim) via the F box protein Jetlag (Jet) and the proteasome, which initiates the resetting of the molecular clock [2, 3]. Cry is also degraded in the light but whereas the degradation of Tim is well characterized [4-8], the mechanism for light-dependent degradation of Cry is mostly unknown. Until now it was believed that these two degradation pathways are distinct [4, 9]. Here we reveal that Jetlag also interacts with Cry in a light-dependent manner. After illumination, Jetlag induces massive degradation of Cry, which can be prevented in vitro and in vivo by adding Tim as an antagonist. We show that the affinity of Tim for Cry and Jetlag determines the sequential order of Tim and Cry degradation and thus reveal an intimate connection between the light-dependent degradation of these two proteins by the same proteasomal pathway.
منابع مشابه
GSK-3 Beta Does Not Stabilize Cryptochrome in the Circadian Clock of Drosophila
Cryptochrome (CRY) is the primary photoreceptor of Drosophila's circadian clock. It resets the circadian clock by promoting light-induced degradation of the clock protein Timeless (TIM) in the proteasome. Under constant light, the clock stops because TIM is absent, and the flies become arrhythmic. In addition to TIM degradation, light also induces CRY degradation. This depends on the interactio...
متن کاملIdentification and characterization of circadian clock genes in the pea aphid Acyrthosiphon pisum.
The molecular basis of circadian clocks is highly evolutionarily conserved and has been best characterized in Drosophila and mouse. Analysis of the Acyrthosiphon pisum genome revealed the presence of orthologs of the following genes constituting the core of the circadian clock in Drosophila: period (per), timeless (tim), Clock, cycle, vrille, and Pdp1. However, the presence in A. pisum of ortho...
متن کاملMorning and evening oscillators cooperate to reset circadian behavior in response to light input.
Light is a crucial input for circadian clocks. In Drosophila, short light exposure can robustly shift the phase of circadian behavior. The model for this resetting posits that circadian photoreception is cell autonomous: CRYPTOCHROME senses light, binds to TIMELESS (TIM), and promotes its degradation, which is mediated by JETLAG (JET). However, it was recently proposed that interactions between...
متن کاملDisruption of Cryptochrome partially restores circadian rhythmicity to the arrhythmic period mutant of Drosophila.
The Drosophila melanogaster circadian clock is generated by interlocked feedback loops, and null mutations in core genes such as period and timeless generate behavioral arrhythmicity in constant darkness. In light-dark cycles, the elevation in locomotor activity that usually anticipates the light on or off signals is severely compromised in these mutants. Light transduction pathways mediated by...
متن کاملThe COP9 signalosome is required for light-dependent timeless degradation and Drosophila clock resetting.
The ubiquitin-proteasome system plays a major role in the rhythmic accumulation and turnover of molecular clock components. In turn, these approximately 24 h molecular rhythms drive circadian rhythms of behavior and physiology. In Drosophila, the ubiquitin-proteasome system also plays a critical role in light-dependent degradation of the clock protein Timeless (TIM), a key step in the entrainme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 19 شماره
صفحات -
تاریخ انتشار 2009